第十一章 全等三角形
1.全等三角形的性质:全等三角形对应边相等、对应角相等。
2.全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL)。
3.角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等。
4.角平分线推论:角的.内部到角的两边的距离相等的点在叫的平分线上。
5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:
(1)确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系);
(2)回顾三角形判定,搞清我们还需要什么;
(3)正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。
第十二章 轴对称
1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
3.角平分线上的点到角两边距离相等。
4.线段垂直平分线上的任意一点到线段两个端点的距离相等。
5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
6.轴对称图形上对应线段相等、对应角相等。
7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
8.点(x,y)关于x轴对称的点的坐标为(x,-y),点(x,y)关于y轴对称的点的坐标为(-x,y),点(x,y)关于原点轴对称的点的坐标为(-x,-y)。
9.等腰三角形的性质:等腰三角形的两个底角相等(等边对等角),等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
10.等腰三角形的判定:等角对等边。
11.等边三角形的三个内角相等,等于60°。
12.等边三角形的判定:三个角都相等的三角形是等腰三角形,有一个角是60°的等腰三角形是等边三角形,有两个角是60°的三角形是等边三角形。
13.直角三角形中,30°角所对的直角边等于斜边的一半。
14.直角三角形斜边上的中线等于斜边的一半。
【八年级上册数学期末考试考点汇总归纳】相关文章:
八年级上册数学期末考试考点汇总知识点整理01-07
八年级下册数学期末考试知识点归纳04-16
数学八年级期末考试试卷分析04-09
小学五年级数学上册期末考试04-16
八年级上册语文期末考试作文(通用32篇)04-15
八年级数学下册期末考试复习资料11-17
八年级数学期末考试质量分析08-05
八年级数学期末考试卷分析04-09